MULTI-OBJECTIVE OPTIMIZATION OF SNAKE ROBOT IN SERPENTINE LOCOMOTION
نویسندگان
چکیده
This paper presents multi-objective optimization for a snake robot with serpentine locomotion. Genetic algorithm (GA) is used to achieve two objectives: minimizing the total travelling time and energy consumption. The effect of initial values winding angle acceleration on consumption average speed depicted. simulation results show periodic pattern joint torques when maintains serpenoid curve during travel. Moreover, Pareto-optimal front was generated optimal solutions both objectives, while weighted sum method selecting best solution. Finally, were verified experimentally an eight-link considering limitations servomotors in experiment. experimental 30° found as optimum that can objectives time. ABSTRAK: Kajian ini berkenaan pelbagai-objektif bagi ular dengan gerakan serpentin. Algoritma genetik diguna mencapai dua objektif iaitu mengurangkan jumlah masa dan guna tenaga. Gambaran kesan awal nilai sudut belitan pecutan pada tenaga purata kelajuan dihasilkan. Dapatan simulasi menunjukkan corak berkala tork sendi yang tetap terhasil semasa berkeadaan lengkung ketika bergerak. Tambahan, berdepan solusi kedua-dua objektif, sementara kaedah berat campuran digunakan menentukan terbaik. Akhirnya, dapatan disahkan secara eksperimen lapan-bahagian menimbangkan kekurangan servomotor dalam eksperimen. adalah gerakan.
منابع مشابه
Multiple-objective Optimization of Serpentine Locomotion with Snake Robot by Using the NSGA
This paper starts with developing kinematic and dynamic model of a snake shape robot in serpentine locomotion and finishes with actual experimentation. At the beginning the symmetrical and unsymmetrical serpenoid curves are introduced. Kinematics and dynamics of a snake robot on flat and inclined surfaces are obtained for a general n-link robot. SimMechanics toolbox of MATLAB software is employ...
متن کاملapplication of reinforcement learning for navigation of a planar snake robot in serpentine locomotion
this article presents an implementation of a reinforcement learning (rl) method for a snake like robot navigation. the paper starts with developing kinematics and dynamics model of a snake robot in serpentine locomotion followed by performing simulation and finishes with actual experimentation. first, gibbs-appell's method is used to obtain the robot dynamics. the robot is also modeled in simme...
متن کاملSerpentine Robot Locomotion: Implementation through Simulation
Machine locomotion using wheels, tracks or legs is common where as generating locomotion in a limbless, wheelless system is more challenging. Wheeled locomotion and legged locomotion have already been studied by many researchers in detail. On the contrary the limbless locomotion has drawn very limited degree of interest. In limbless locomotion (of a serpent) the cyclic changes in the body shape...
متن کاملsolution of security constrained unit commitment problem by a new multi-objective optimization method
چکیده-پخش بار بهینه به عنوان یکی از ابزار زیر بنایی برای تحلیل سیستم های قدرت پیچیده ،برای مدت طولانی مورد بررسی قرار گرفته است.پخش بار بهینه توابع هدف یک سیستم قدرت از جمله تابع هزینه سوخت ،آلودگی ،تلفات را بهینه می کند،و هم زمان قیود سیستم قدرت را نیز برآورده می کند.در کلی ترین حالتopf یک مساله بهینه سازی غیر خطی ،غیر محدب،مقیاس بزرگ،و ایستا می باشد که می تواند شامل متغیرهای کنترلی پیوسته و گ...
Adaptive Locomotion of Multibody Snake-like Robot
This paper represents an adaptive rhythmic control for a snake-like robot with 25 degrees of freedom. The adaptive gait control is implemented in algorithmic way in simulation and on a real robot. We investigated behavioral and energetic properties of this control and a dynamics of different body segments. It turned out that despite using homogeneous generators, physical constraints have an inh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IIUM Engineering Journal
سال: 2021
ISSN: ['2289-7860', '1511-788X']
DOI: https://doi.org/10.31436/iiumej.v22i2.1691